PII: S0960-894X(97)00027-9

ATP-SENSITIVE POTASSIUM CHANNEL OPENERS: SYNTHESIS AND ANTIHYPERTENSIVE ACTIVITY OF 4-BICYCLYLOXYBENZOPYRANS

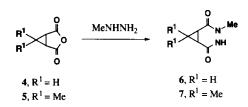
Haruhiko Horino,* Tetsuya Mimura, Masahiro Ohta, Hideo Kubo, and Masayuki Kitagawa

New Product Research Laboratories II, Daiichi Pharmaceutical Co., Ltd., Kita-Kasai, Edogawa-ku, Tokyo 134, Japan

Abstract: Synthesis and hypotensive activity of *trans*-3,4-dihydro-3-hydroxy-4-[(5-oxo-3,4-diazabicyclo[4.1.0]hept-2-en-2-yl)oxy]-2*H*-1-benzopyrans and their congeners are described. Compounds (-)-**9eB** and (-)-**20B** were highly potent ATP-sensitive potassium channel openers. © 1997, Elsevier Science Ltd. All rights reserved.

ATP-sensitive potassium channel openers (PCOs) are potent antihypertensive agents acting *via* peripheral vasodilation. Previous studies have produced a lot of compounds with a different framework such as cromakalim ((±)-1), pinacidil, aprikalim, diazoxide, nicorandil and minoxidil. Major compounds belong to 4-substituted-3,4-dihydro-2*H*-1-benzopyrans, represented by (±)-1. Since the 4-substituents of such compounds are crucial for the activity, most studies have focused on that substituent and consequently produced a variety of the 4-substituents. However, those substituents are limited to acyclic or monocyclic moieties with few exceptions. Therefore, we are interested in synthesis of dihydrobenzopyrans with a bicyclic moiety at that position: the study would contribute to further understanding of the structural requirement for the 4-substituent, leading to discovery of improved agents. Recently, Bergmann *et al.* have reported a potent PCO coded as EMD 57283 (symakalim, (-)-2) which has a unique monocyclic 6-oxo-3-pyridazinyloxy moiety at the 4-position of the benzopyran skeleton. In this paper, we replace this monocyclic pyridazinyloxy moiety with a bicyclic pyridazinyloxy group to produce compound 3 and then assess whether such larger substituents are acceptable or not.

(±)-1, cromakalim (-)-1, levcromakalim


(±)-**2**, EMD 56010 (-)-**2**, EMD 57283, symakalim

3

Chemistry

Cyclopropanedicarboxylic anhydride 4^3 and 5^4 reacted with methylhydrazine to produce 3,4-diazabicyclo[4.1.0]heptane-2,5-diones (\pm)-6 and (\pm)-7, respectively (Scheme 1). Reaction of the compound (\pm)-6 or (\pm)-7 with racemic 3,4-epoxybenzopyrans (\pm)-8e⁵ gave a mixture of two racemates of trans-4-[(5-oxo-3,4-diazabicyclo[4.1.0]hept-2-en-2-yl)oxy]-3,4-dihydro-2H-1-benzopyran-3-ols 9a-9e and 10, which were separated by column chromatography to produce racemates A ((\pm)-9aA-(\pm)-9eA and (\pm)-10A with a higher Rf value on TLC) and racemates B ((\pm)-9aB-(\pm)-9eB and (\pm)-10B with a lower Rf value), respectively.

Scheme 1

compound	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4
(±)-9aA,B	Н	CN	Н	Н
(±)-9bA,B	Н	NO_2	Н	Н
(±)-9cA,B	Н	C ₂ F ₅	Н	Н
(±)-9dA,B	Н	H	NO_2	Н
(±)-9eA,B	Н	CN	н	Me
(\pm) -10A,B	Me	CN	Н	Н

Scheme 2

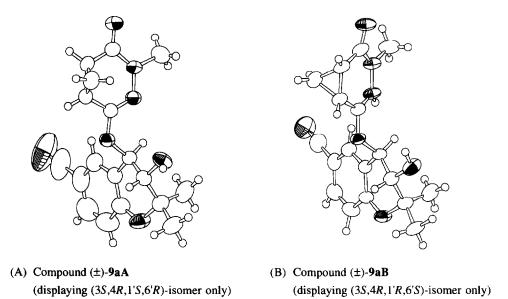


Figure 1. X-ray crystal structure showing configurations of compounds (±)-9aA and (±)-9aB

Racemates (\pm)-9cB and (\pm)-9eB were further resolved using chiral HPLC (CHIRALPAKTM AD, Daicel Chemical Industries, Co. Ltd.) to give optically pure enantiomers (+)-9cB / (-)-9cB and (+)-9eB / (-)-9eB, respectively. With use of optically active epoxide (-)-8a,6 chiral products (-)-9aA (3S, 4R, 1'S, 6'R) and (-)-9aB (3S, 4R, 1'R, 6'S) were obtained by a similar reaction (Scheme 2).

The X-ray crystallographic analysis elucidated the configurations of several racemates A and B: configurations of compounds (\pm) -9aA (Figure 1, left) and (\pm) -9bA are (3S,4R,1'S,6'R) / (3R,4S,1'R,6'S), and conversely those of (\pm) -9aB (Figure 1, right), (\pm) -9dB, (\pm) -9eB and (\pm) -10B are (3S,4R,1'R,6'S) / (3R,4S,1'S,6'R). Enantiomers (-)-9aA and (-)-9aB, prepared from (-)-8a, were therefore assigned as shown in Scheme 2. In addition, the 4-protons of (\pm) -9aA- (\pm) -9dA and (\pm) -10A, observed at 5.61-5.67 ppm, shifted to higher field than those of racemates B by 0.11-0.14 ppm in NMR spectra. Similarly, (\pm) -9eA with a 3-methyl substituent had a higher chemical shift of 4-H (5.74 ppm) than that of (\pm) -9eB (5.83 ppm). Thus, racemates A are characterized by both their chemical shift of 4-H and Rf value higher than those of racemates B.

Reaction of cyclopentenedicarboxylic anhydride 11 with methylhydrazine offered 3,4-diazabicyclo[4.3.0]nona-1(6)-ene-2,5-dione 13, which reacted with (\pm) -8a to give trans-4-[5-oxo-3,4-diazabicyclo[4.3.0]nona-1(6),2-dien-2-yl)oxy]-2H-1-benzopyran (\pm) -15 (Scheme 3). Similar reaction of (\pm) -8a with phthalazinedione 14 gave trans-4-[4-oxo-3,4-dihydrophthalazin-1-yl)oxy]-2H-1-benzopyran (\pm) -16.

440 H. HORINO et al.

Scheme 4

Reaction of racemic methyl cis-2-cyanocyclopropanecarboxylate (\pm)-18 with methylhydrazine to give 2-amino-3,4-diazabicyclo[4.1.0]hept-2-en-5-one (\pm)-19, which reacted with (-)-8a to produce chiral trans-4-[(5-oxo-3,4-diazabicyclo[4.1.0]hept-2-en-2-yl)amino]-3,4-dihydro-2H-1-benzopyran-3-ols (-)-20A (3S, 4R, 1'S, 6'R) and (-)-20B (3S, 4R, 1'R, 6'S) (Scheme 4).

The structures of (-)-20A and (-)-20B were assumed on the basis of their Rf values and chemical shifts of the 4-H by extrapolating the results of the O-bridged compounds into the NH-bridged analogues.

Results and discussion

Potassium channel opening activity (86 Rb efflux) and antihypertensive activity in spontaneously hypertensive rats (SHRs) after oral administration were determined according to the described methods $^{7.8}$ and were shown as EC_{AUC0.2} and ED_{50mmHg}, respectively, (Table 1).

Compound (\pm) -9aB showed potent antihypertensive activity, but not another type racemate (\pm) -9aA, indicating that racemates A of the series of compounds 9a-e have no or weak activity. In addition, activity of (-)-9aB was two-fold potent than that of (\pm) -9aB in both *in vitro* and *in vivo* assays, suggesting that (+)-9aB is weakly active or inactive. This result is consistent with the difference in potency between levorotatory 1 (levcromakalim) and the corresponding dextrorotatory enantiomer.9

Table 1. Structure and Activity of 4-Heterocyclyloxy-2H-1-benzopyrans

(-)-**2**, EMD 57283

R1 N. Me	N Me		N Me		». N		
R ² OH R ⁴	NC OH			NC OH	NC NH OH		
9, 10	(±)-15			(±)-16	(-)- 20B		
compound	R ¹	R ²	R ³	R ⁴	configuration ^a	ED _{50mmHg} (mg/kg)	EC _{AUC0.2} (μM)
(±)-9aA	Н	CN	Н	Н	racemate A	> 1	NTb
(±)-9aB	Н	CN	Н	H	racemate B	0.047	0.39
(-)- 9aB	Н	CN	Н	Н	(3S,4R,1'R,6'S)	0.029	0.18
(\pm) -9bB	Н	NO_2	Н	Н	racemate B	0.049	NT
(-)-9cB	H	C_2F_5	Н	Н	(3S,4R,1'R,6'S)	0.047	NT
(\pm) -9dB	Н	Н	NO_2	Н	racemate B	> 0.3	NT
(±)-9eB	Н	CN	Н	Me	racemate B	0.0042	NT
(-)- 9eB	Н	CN	Н	Me	(3S,4R,1'R,6'S)	0.0023	0.021
(\pm) -10B	Me	CN	Н	Н	racemate B	> 0.1	NT
$(\pm)-15$					racemate	0.86	NT
$(\pm)-16$					racemate	> 10	NT
(-)-20B					(3S,4R,1'R,6'S)	0.0065	NT
(±)-1, cromakalim					racemate	0.31	2.8
(-)-1, levcromakalim					(3S, 4R)	0.14	1.6
(±)-2, EMD 56010					racemate	0.023	0.25

a) The polar diastereoisomer was shown as racemate B and the less polar diastereoisomer as racemate A on silica gel thin layer chromatography. The relative (or absolute) configurations are not determined except for (\pm) -9aB, (\pm) -9aB, (\pm) -9eB and (\pm) -10B. b) Not tested.

(3S,4R)

0.0064

0.16

In a series of 4-[(5-oxo-3,4-diazabicyclo[4.1.0]hept-2-en-2-yl)oxy]-3,4-dihydro-2H-1-benzopyran-3-ols, compounds (-)-9aB, (\pm)-9bB, (-)-9cB and (-)-9eB with an electron-withdrawing group at the 6-position of the benzopyran ring exhibited potent activity, but not (\pm)-9dB with such a substituent at the 7-position. These results suggest that the electron-withdrawing group at the 6-position is crucial for the potency. In addition, 6-cyano-3-methylbenzopyran (-)-9eB was highly potent, as expected from the report described that introduction of a 3-methyl moiety into 2 increases relaxing activity in arteries. Replacement of the O-bridge of (-)-9aB with the NH-bridge, as (-)-20B, increased activity.

Compounds (\pm) -15 and (\pm) -16 had low potency, suggesting that the size and/or coplanality of the fused ring to the pyridazinyloxy moiety is deleterious for drug-receptor interaction. This speculation also may account for loss of potency in *gem*-dimethylcyclopropane derivative (\pm) -10B.

In conclusion, we obtained highly potent PCOs, (-)-9eB and (-)-20B, and thus showed that fusion of a cyclopropane moiety to the 4-heterocyclyloxy substituent of benzopyrans was a useful modification method in some PCOs.

Acknowledgment: We thank Mr. Ken-ichi Yamazaki and Mr. Makoto Suzuki (Daiichi Pharmaceutical Co., Ltd.) for X-ray crystal analysis.

References and notes

- 1 Atwal, K. S. Drug. Dev. Res. 1994, 33, 250.
- 2 Bergmann, R.; Eiermann, V.; Gericke, R. J. Med. Chem. 1990, 33, 2759.
- 3 McCoy, L. L. J. Am. Chem. Soc. 1958, 80, 6568.
- 4 Devos, M. J.; Denis, J. N.; Krief, A. Tetrahedron Lett. 1978, 1847.
- 5 (a) Preparation of (±)-8a, (±)-8b and (±)-8d: Evans, J. M.; Fake, C. S.; Hamilton, T. C.; Poyser, R. H.; Watts, E. A. J. Med. Chem. 1983, 26, 1582.
 - (b) Compound (±)-8c was obtained by potassium hydroxide treatment of 3,4-trans-3-bromo-6-pentafluoroethyl-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-4-ol which was prepared by the method described in the following literature: Buckle, D. R.; Eggleston, D. S.; Pinto, I. L.; Smith, D. G.; Tedder, J. M. Bioorg. Med. Chem. Lett. 1992, 2, 1161.
 - (c) Preparation of (±)-8e: Gericke, R.; Harting, J.; Lues, I.; Schittenhelm, C. J. Med. Chem. 1991, 34, 3074.
- 6 Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063.
- 7 Quast, U.; Baumlin, Y. Naunyn-Schmiedeberg's Arch. Pharmacol., 1988, 338, 319.
- 8 Haywood, J. R.; Shaffer, R. A.; Fastenow, C.; Fink, G. D.; Brody, M. J. Am. J. Physiol., 1981, 241, H273.
- 9 Gericke, R.; Harting, J.; Lues, I.; Schittenhelm, C. J. Med. Chem. 1991, 34, 3074.

(Received in Japan 19 November 1996; accepted 9 January 1997)